Rigidity of group actions on homogeneous spaces, III
نویسندگان
چکیده
منابع مشابه
Measurable Rigidity of Actions on Infinite Measure Homogeneous Spaces, Ii
Theorem 1.1 (Shalom and Steger, [21]). Measurable isomorphisms between linear actions on R of abstractly isomorphic lattices in SL2(R) are algebraic. More precisely, if τ : Γ1 ∼= −→Γ2 is an isomorphism between two lattices in SL2(R) and T : R → R is a measure class preserving map with T (γx) = γT (x) for a.e. x ∈ R and all γ ∈ Γ1, then there exists A ∈ GL2(R) so that γ = AγA−1 for all γ ∈ Γ1 an...
متن کاملIsospectral simply-connected homogeneous spaces and the spectral rigidity of group actions
We generalize Sunada’s method to produce new examples of closed, locally non-isometric manifolds which are isospectral. In particular, we produce pairs of isospectral, simplyconnected, locally non-isometric normal homogeneous spaces. These pairs also allow us to see that in general group actions with discrete spectra are not determined up to measurable conjugacy by their spectra. In particular,...
متن کامل6 On discontinuous group actions on non - Riemannian homogeneous spaces ∗
This article gives an up-to-date account of the theory of discrete group actions on non-Riemannian homogeneous spaces. As an introduction of the motifs of this article, we begin by reviewing the current knowledge of possible global forms of pseudoRiemannian manifolds with constant curvatures, and discuss what kind of problems we propose to pursue. For pseudo-Riemannian manifolds, isometric acti...
متن کاملOn discontinuous group actions on non-Riemannian homogeneous spaces
This article gives an up-to-date account of the theory of discrete group actions on non-Riemannian homogeneous spaces. As an introduction of the motifs of this article, we begin by reviewing the current knowledge of possible global forms of pseudoRiemannian manifolds with constant curvatures, and discuss what kind of problems we propose to pursue. For pseudo-Riemannian manifolds, isometric acti...
متن کاملDiagonal Actions on Locally Homogeneous Spaces
Contents 1. Introduction 1 2. Ergodic theory: some background 4 3. Entropy of dynamical systems: some more background 6 4. Conditional Expectation and Martingale theorems 12 5. Countably generated σ-algebras and Conditional measures 14 6. Leaf-wise Measures, the construction 19 7. Leaf-wise Measures and entropy 37 8. The product structure 61 9. Invariant measures and entropy for higher rank sub...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Duke Mathematical Journal
سال: 2015
ISSN: 0012-7094
DOI: 10.1215/00127094-2860021